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Having in mind the development of a technical tool to treat fermionic systems, 
we propose a Kadanoff-Wilson block renormalization transformation employ- 
ing unusual averages (an inevitable artifact due to the specificity of lattice 
fermions and to the desired transformation properties). The free propagator is 
decomposed into operators associated to different momentum scales and with 
orthogonal relations, and the effective actions generated from the Dirac 
operator by the transformations present uniform exponential decay. We argue 
to show the usefulness of the formalism to study correlation functions of inter- 
acting fermions. 
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1. INTRODUCTION 

Renormal iza t ion  group (RG)  techniques have been used as a successful 
tool  for r igorous analysis of several fields: problems ranging from classical 
mechanics to quan tum m a n y - b o d y  systems have been treated via such an 
approach.  A large and useful formalism has been developed,  TM 21 a l though 
usually quite intr icate ( leading to the search for simplifications).  

Recently, ~3'41 s tudying the wel l -known lattice dipole  gas [and  (V~) 4 
mode l s ]  with the R G  techniques a l ready developed in ref. 1 but  emphasiz-  
ing the proper ty  of o r thogona l i ty  between different momen tum scales in 
the t ransformat ion (proper ty  associated to the wavelets implicit  in the 
structure of the block RG),  we established exact and simple formulas for 
the cor re la t ion ' func t ions  with a good  control  of the dominan t  and  sub- 
dominan t  terms. The nonprol i fera t ion of terms and the simplicity of the 
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final formulas obtained in that work showed us the usefulness of the 
"orthogonality of scales" property to technically improve the RG 
formalism. 

Concerning the fermionic models, however, the implementation of a 
similar RG transformation (i.e., a Kadanoff-Wilson block-spin RG with 
the orthogonal property) presents some problems. We recall that even the 
formulation of lattice fermionic theories is troublesome: the doubling of the 
free spectrum due to a naive discretization of the Dirac equation is well 
known. 

The flow of the Wilson action via a block RG transformation has been 
rigorously studied in ref. 5: using a transformation with a Gaussian weight 
function (which breaks chiral symmetry explicitly), the fixed point is 
obtained and the locality of the effective actions (uniform exponential 
decay for the actions rescaled to the unitary lattice) is shown as well as 
other useful results (such as the telescopic decomposition of the free 
propagator--details in the next section). However, the orthogonality 
between scales is lost, the property responsible for the simplicity of the 
correlation formulas for interacting systems, as said above. Also, in ref. 5, 
using a transformation with a 6 weight function (which "abruptly" 
separates the scales leading to the orthogonal property), the unexpected 
fact is shown that the effective actions do not maintain the uniform 
exponential decay, which, unfortunately, makes the transformation inade- 
quate to treat interacting fermions. 

Thus, having in mind the development of RG techniques and based on 
the search for "technical simplicity," we propose in this paper an RG trans- 
formation for lattice fermionic models that (initially) applied to the free 
action gives us a telescopic decomposition of the free propagator in terms 
of operators with the property of orthogonality between scales, and that 
also makes local all the effective actions (kernels with uniform exponential 
decay). We hope later, using this orthogonal property and the local 
actions, to study interacting fermions. Specifically, we believe that this RG 
transformation will make easier the study of correlation functions (see 
Section 5). 

The rest of the paper is organized as follows. In Section 2 we introduce 
some definitions, review some recent results, and state the theorem about 
the uniform exponential decay of the effective actions (and other operators). 
In Section 3 we present an RG transformation with 6 weight function 
but with the average over blocks of spins given by a complex (imaginary) 
perturbation of the usual one (and also prove that any real perturbation 
does not lead to a transformation with the required properties). Section 4 
is devoted to technical proofs of decay properties, and Section 5 to final 
comments. 
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2. DEFINIT IONS A N D  RECENT RESULTS 

In refs. 3 and 4, via block RG techniques and (emphatically) using the 
"orthogonality of scales" property, we study the correlation functions of 
lattice scalar field models such as (V~b) 4 and dipole gas, obtaining exact and 
simple formulas which separate the dominant and subdominant terms and 
make clear the long-distance behavior. Considering models described by 
interactions on unitary finite lattices (with L Nd points; the thermodynamic 
limit is considered later) such as 

a~(~) = �89 a~) + v(~) (2.1) 

where ~b(x) e R, x e A u c Z a, d/> 3, A -= O*O (for Dirichlet boundary condi- 
tions, otherwise plus a reguralizer), V a function of OuCh(x), and using the 
block RG transformation 

exp[ - Jg ' (O)]  = I exp[ -..z~(~b) ] 6(C(~ - O) DO (2.2) 

where ~b e R A'v- ', D~b = I-!,-~ As dO(x), 6(C(~ - ~) = l-I.,-~Au_~ 6(CO(x) - ~b(x)), 
with C(~(x) meaning the rescaled average (canonical scaling) over blocks 
b~.~ of size L, centered in L x ~ A  N, 

C(J(x)= L(d- 21/2L -d ~ q)(y) (2.3) 
y ~ b~x 

we follow the flow of the generating function Z ( h ) - S e x p [ - J t ~ ( ~ b ) +  
(h, ~b)] D~b, obtaining, after n steps of the RG transformation (17 ~< N), 

Z(h) = c exp[�89 P,,h) ] 

• f exp{-V"(Ou[M,,qk+G,,h])- �89 D(~ (2.4) 

where c does not depend on h; b,, is the wavefunction renormalization 
constant at step n; V" is the nth irrelevant perturbative potential (the 
potential without its marginal quadratic part); the propagators P,, and G,, 
are written in terms of operators describing interactions in different 
momentum scales (and associated with a telescopic decomposition of the 
free propagator and the lattice wavelets~3'4)); A,, is a "local" effective action 
(exponential decay), which goes with n to the Gaussian fixed point; and 
M,, is the n-step minimizer (also with exponential decay). 

Once more, we emphasize the simplicity of the formula obtained for 
the generating function: due to the orthogonal property there is no mix 
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between different momentum scales (see the expressions for P,, and G,, in 
refs. 3 and 4). 

Turning to the fermionic systems, we observe that the implementation 
of a similar RG transformation with the properties related above is not, 
say, immediate. 

Free lattice (and continuous) Euclidean fermions are treated in ref. 5 
using block RG transformations with a Gaussian and also a 6 weight 
function, obtaining expressions analogues to those described above. The 
considered actions, living on lattices with spacing e (initially), are given by 
the e-lattice Wilson version of the Dirac operator, 

D =  ~ , ~ , 2 j - ~ e A ~ ,  - (8,, + 0~,*) (2.5) 
, u = l  tt = l e 

where d~, is the e-lattice forward derivative, d~* is its adjoint, and V~ are 
anti-Hermitian Dirac matrices obeying V~,Vv + V,,7~, = 26,,.. The extra term 
(breaking chiral symmetry) is introduced to suppress the doubler fermions 
and vanishes in the continuous limit (e--, 0). The flow of the free action is 
studied via the RG transformation T,~,L defined as 

exp(;~, 91 X) = [ T~,,/_ exp(-, D-)](2, Z) 

= N f d~ d~O expEa(Le)-'  (;~- Q~, z - Q~k)] exp(~, D~b) 

(2.6) 

where ~, ~O (2, Z) are independent Grassmann algebra generators (with 
suppressed spinor and lattice indices), and mean e (Le) lattice fields. Q is 
the usual arithmetic averaging operator over a block of side size L~, and 
a is a real, positive parameter (in the limit a ~ 0o we have the RG transfor- 
mation with 6 weight function). N is a normalization constant such that 

f exp[~, D,X] d z d z = f e x p [ ( ; ,  Dt~] d~ a~ 

Successive RG transformations are introduced obeying the semigroup 
property 

TLk-,, T L k - 2 ~  a,L -- a.L " " T~.L = T~a,,L k 

where T~k.Lk is defined as in (2.6) with a k = [ ( 1 - - L - l ) / ( 1 - - L - k ) ] a  
replacing a, L k replacing L, and Qk (arithmetic averaging operators over 
blocks of side Lke) replacing Q. Irrespective of the domain lattice (i.e., of 
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the lattice spacing), we use the same symbol for the arithmetic averages. 
With these transformations, after simple algebraic manipulations, the 
telescopic decomposition of the free propagator is obtained: 

n - - I  

D - ' =  2 [D-1Q~DjQjD-'-D-'Q~+tDJ+,QJ+, D - ' ]  
j = O  

+ D-'Qt,,D,,Q,,D -1 

n - -  1 

= 2 M j F j M ~ + M , D , ; ' M ,  ~, (2.7) 
j = O  

where D o - D ,  Qo-I;  and Mj=D-tQ~Dj,  M~=DjQjD- '  are LJe (e ) to  
e (LJe) lattice operators; Fj=Df~-DfLQ*Dj+~QDf  ~ is an Le lattice 
operator. It is shown that the kernels of Mj, M J, and Fj have exponential 
decay such that 

1 ( 1  ix_x , ,  ) X, X, Eezd (2.8) MjFjM~ (x, x ' )~  (LJg)d_ l exp --Lj--- ~ 

that is, (2.7) gives us a decomposition into momentum scales (L-ie) -l .  
Rescaling the operators (after k steps) to the unitary lattice, it is 

shown (Theorem III.1 in ref. 5) that, for a small, the following result holds: 

Theorem 2.1. 

ID~k~(x, x')l ~< c 

I/'~k~(x, x')l ~< c 

[D~ Q~D~(y, x)l ~ c 

IDcklQkD~(x, Y)I <~ c 

3fl > 0, c > 0 independent of k such that 

expU-f l  I x - x ' l ]  

e x p [ - f l  I x - x ' l ]  

e x p [ - f l  l y - x l l  

exp[ - /~  I x - y l ]  

for y, y' ~ L-~Z d, x, x' E zd; Fik ~, D(k ) in the unitary lattice, and DI, I the 
Dirac operator (Wilson version) in the lattice r/= L -k. 

This theorem is proved in Section 4 for the new RG to be proposed. 
The problem with the RG transformation with finite a is that we have 

D(k) = ak(I + akQkD~] Q~)-' (2.9) 

[formula (3.11) in ref. 5] and there is no orthogonality between the 
operators {MjFjM~}[']=, 1, - i  , - M,,D,, M,, in the "norm" (., D.)  [which may 
be checked using the formulas below (2.7)]. For infinite a, i.e., considering 
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the RG transformation with the 6 weight function, the effective actions 
become 

Dtk ) = (Q~D~ Qtk)-~ (2.10) 

following the orthogonal property, but losing the uniform exponential 
decay of these actions (i.e., invalidating Theorem 2.1), as proved in 
Section 4 of ref. 5 (more details below), which should lead to a "local" 
fixed point. 

Thus, to treat fermions, we are forced to develop a more elaborate 
formalism. 

3. U N U S U A L  A V E R A G E S  FOR BLOCK 
RG T R A N S F O R M A T I O N S  

The property of orthogonality between scales, as we have noted, seems 
to be associated with the RG transformation with 6 weight function, which 
is intuitively expected since the 6 function recalls separation in a sharp 
manner. Another way to realize an orthogonal decomposition into different 
momentum scales is to introduce characteristic functions in the Fourier 
transform of D-~, but this leads to operators without exponential decay in 
position space (and so does not interest us). 

The algebraic structures of the operators related to the "6-function" 
transformation may be obtained by direct inspection, and are given by 
formulas (2.7) and (2.10). Note that the operators depend only on the 
initial action D and on the average Q (besides, of course, on the RG weight 
function). Thus, we shall investigate unusual averages in a transformation 
with ~ weight function. 

We define general averages Q over blocks of "side L"  (although, for 
one block, sities outside it may also contribute to the average) as 

Qf(u)-~. W(x) f (Lu-x) ,  x, ue~Z a 
)c  

__(1),,f ff.(p) f(p)ei,.C,d p (3.1) 

where pE (-n/r rc/~] d, and /,T'(p) is the Fourier transform of W(x), to be 
properly chosen [the same for f ( p ) ] .  Writing p=p'/L+l/L, where 
IP',I ~< rt/r l = 27tm/~, Im, I < L/2, i.e., m e z d n  ( --L/2, L/2) d, we have 

(O/)-(p')=~g" + f +Z (3.2) 
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and for the adjoint, 

[p' l'~ ~ i ( p  +_~l f (p  ) / Q y ) - t y + Z )  = . -  . '  l _ , (3.3) 

where I,~ means the complex conjugate to I,V. 
Hence, for the inverse of effective action, 

1 ~ p '  l 

=/3 i-'(p') jT(p ' ) (3.4) 

To obtain the expression for (Q,D-~Q*,,) - '  we check the relation 
between Q, and Q. Due to the semigroup property of an RG transforma- 
tion it follows that Qk+j=QkQj. This property (and, of course, the for- 
mulas due to the RG with 6 weight function) leads to the orthogonality 
between scales: taking MjFjMJ and M~FiM ~, j ~  i, as an example, from 
the formulas below (2.7) we have MjFjMJDMiF, M~ =0. Thus, 

Q,,f(u) = ~ W,,(x) f(L"u - x) 
x 

= ~, W(xi)...  W(x , , ) f (L"u-L"- ixL-L"-2x2  . . . .  x,,) (3.5) 
.%'l,...,Xn 

(Q,, meaning average over blocks "size L""). Hence, 

W,,(L"- ixI + L"- 2x2 + ... +x , , )=  W(xl) ... W(x,,) (3.6) 

and 

~,,(p) =y. W(x,)e-i~'~~ x . . .~  W(x,,)e-'PX. 
)r Xn 

Writing for the term with x, 

L~_, Pl h- l, TC ~_]a 2gml 
p =  L,,_---- T, p , e  - ~ , C A ,  l , =  ~ , Im, l < - - 2  

we have 

Z W(xl) e-'pL"-t'' = ~  W(x,) e-~ = 7V(p,) 
Xl  XI 

(where p~ = L " -  lp _ ll). With similar considerations, 

ff',,(p) = i f (p , )  I~'(p2)... i f ( p , _ , )  I~(p) = ITV(L"-~p) ff'(L"-Zp).., if(p) 
(3.7) 



1074 Pereira 

[since ff '(p) has period 2~/~]. From (3.4), in terms of I~,, the inverse of 
the effective action after n steps becomes (rescaled to the unitary lattice) 

z n  

For  the usual rescaled average [i.e., W ( x ) =  L ~ for x ~ bo L, e related to the 
field dimension],  using (3.7), we have 

and 

�9 2 n 
[ ~ ., L2n• sm (p~,L/2)  
W,,(p)[- = sin2(pu/2) 

, u = l  

DLI(p) = 

(3.9) 

I-~ s inZ(pJ2)  x - i y ' ( p + l )  (3.10) 
/ ~ 2 n Z  d ,u=l [ (P ,+l , , ) /2]  2 ( P + l )  2 

for ~ = - ( d +  1)/2. 
Now, from (3.10), we note the problem with the effective actions as 

indicated before. /3~ ~ is a periodic function (Fourier  transform of a func- 
tion in the unitary lattice) with period 2x, so / 3 L l l u ( p u = - r  t ) =  
b L  l[u ( p u = x ) .  But it is easy to see that /3L 1 is also an odd function 
[ /3Z ~ 1~ (p ,  = - ~ ) =  - / 3 ~  J 1,, (p~ = ~)].  T h u s / ) ~ '  Is (P,, = r0 = 0, and the 
inverse (/3~) does not even exist at these points (anyway, we abusively 
maintain the notat ion /3L~). Before trying to solve this problem con- 
sidering other averages, we prove a simple but important  result. 

I . e m m a  3.1.  For  any real W(x),  x e Z  d, the corresponding/3L~lu  
vanishes at pu = re. 

ProoL For  real W(x),  

lTV(p) = ~. W(x) cos(p.x)- i ~ W(x) sin(p-x) 
x ~ Z  d x E Z  d 

-- A (p )  -- iB(p) 

with A ( p )  and B(p)  real, A an even function, and B odd. Hence, 
I ff'(p)[2 = A2(p )+  B2(p) is an even function, which is enough to prove the 
lemma: from (3.8) and (3.7), 

/3~(p)= ~ lf(p+l)12x-iT.(p+l) 
I~z~ (P + I) 2 

with f (function of if') even, and so /3~ ~ odd with period 21t, i.e., 
Dg'l, (p,,= ~)=0. I 
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This lemma says that the consideration of complex averages is a must. 
Thus, we propose to investigate the average given by the usual one 

[i.e., W ( x )  constant for x inside the block b~ with L d points and centered 
at zero, and vanishing outside it] plus a small complex perturbation 
properly chosen to break the undesirable symmetry of the fixed point 
(which makes /3L ~ vanish, as described above). We take, for the Fourier 
transform of W ( x ) ,  x in the unitary lattice, L odd, 

It ~ 1 I-'c.u I < L / 2  

( 6 = 0  gives the usual formula). In the position space, W ( x ) =  
L:' 1--[d=~ W~,(x~,) with 

W.(xj,) = i6/2, xu = - (L -- 1 )/2 - 1 

= 1 + i6/2, x u = - ( L  - 1 ) / 2  

= 1,  x , ,  = - -  ( L  - -  1 ) / 2  + m ,  

= 1 - i6/2, x~, = (L - 1 )/2 

= - i6/2, x u = (L - 1 )/2 + 1 (3.12) 

m ~ { 1 , 2  ..... L - - 2 }  

Note that the perturbation changes, in relation to the usual average, only 
points in the boundary of a block (and that the average of one block con- 
siders even sities outside it). 

Now, starting with the Wilson action, we get 

Irn~l < Ln/2  I t ~  1 k =  1 
I = 2r tm ~ 2n  Z d 

sin2([p,  + l l ,]/2 ) "~ - i~ . ( p  + l)  (3.13) 
x sin2 ([pu +I~,] /2L')S (P + l) 2 

that is, an effective action still periodic (with period 2n), but no longer an 
odd function (unitarity is also lost), which avoids the vanishing at pu = 7t. 
Observe also that the new action has not been changed at p = 0. 

The next section is devoted to proving that this (technical) small 
perturbation is enough to give us an RG transformation with the required 
properties: orthogonality between scales and locality of the effective actions 
(besides locality of the fluctuation field two-point function Fj and the 
minimizer Mj, etc.). 
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4. D E C A Y  PROPERTIES 

In this section we prove the theorem of Section 2 for the RG transfor- 
mation proposed here, that is, we establish the uniform exponential decay 
for the effective actions Du), fluctuation two-point functions Fu), and 
minimizers M u r  The proofs are carried out showing boundedness and 
analyticity of the Fourier transform of the operators in a small complex 
strip 

Tc = {llm(p,)[ <~' ,  Re(p L ..... pd)~ (--n, n] d} 

resulting in exponential decay in the p = 1 direction and, by symmetry, in 
all directions. 

Considering the initial lattice in eZ a, we write the average 17Vj(p) as 
(for the final lattice in LJ~Z a) 

d 

ff 'J(P)= H ~..(P)~'J(~P,,) (4.1) 
, u = l  

where fi'5(.) is the usual average (without the scaling factor) and 
cs = %(~p.) the perturbation [ff~ - cg, ~,(p)  _ 1 + & sin P. ;  see (3.11), 
and (3.7) for the relation between ~. and cs We have, for g~I2(LJeZa), 
f ~  12(eza), and all(p) =- (e i ' p ' -  1 )/~, 

(Qj f )~  (p) = Y' c~.,,(p+l) ~ 
[ p + / )  

, , , = ,  O,~(p+l) f ( p + l )  (4.2) 

FI LJe, (Q) g)~ ( p + / ) =  cg~., ,(p+l)(O~'(P+l)~ 
. = ,  \ a~,(p + /) / g(P) (4.3) 

where 

~ x 1 d 2rcnl m ~ Z d 
P ~ LJ'--~ ' I~.J ' 1 = L j ,  

such that 

( 
P + l e \ - - e ,  e_ 1 , 

For the Dirac operator (Wilson version), 

a sin qp, + r/ a D,,,I(P)=i Z )'~, 
. = l  tl ~= 1 

D ~,](p) = --iv" K(p) + M(p) 
K2(p)+ M2(p) 

L odd 

1 - -  c o s  I?p~, 
q2 -- iv. K(p) + M(p) (4.4) 

and for the other operators we get the following result: 

(4.5) 
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Lemma 4.1. (a) 

D,k,(X, X')= f (~--P)~Dtk,(p)eiP "~ ...... ,) 

o) , (p  , . . . . .  ., - l - l )  2"/y ~ - 1 . 
X e ~p" 

a. . (p  + l)  J /  

(b) 

F, kl(X, x')= ,~1' --~/L. ~/~_]d (2 l(p'+ I') Dik + ,,. L(P') DI-kI(P'+ l) 

O j,(p + 

\O ' (p '+T) )  rg,,(p + / )  

O),(p + l ) J  e - " ~ - r l "  

(c) 

D~QID,k , (V ,X)=f  dp 
- , ,=,  t j 

x D ~ ( p  + 1) Dik~(p)eilP+l)Ye-iP" 

x , x ' ~ Z  u, y ~ L - ~ Z  d, p e ( - - n , ~ ]  d, /=2tern, r n e Z  d such for that 
p+l~  (--LkTt, LkTz] d in (a), (c); p~(-Tt/L,  7~/L] d, l, l' =2~m/L, m E Z  d 
such that p + 1, p + l ' ~  ( -~z, 7t] d in (b). 

Proof. Immediate for (a) and (c). For  (b) we use the momentum- 
space representation of Fk [expression below (2.7)], write the first term 
D~- 1 as 

D[. l(p + l)= DF. ~(p + l) Dk + ~(p) D[. ) ~(p) 

=D[. ~(p+l) Dk+~(p)[QD~-~Q*(p)] [see (2.24)] 

and use the expressions (4.2) and (4.3) for Q and Qt above. Then, some 
manipulations lead to the final formula. II 
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We obtain the necessary bounds for the Fourier transform of the 
operators in the theorem of Section 2 after separating a factor D~,) in the 
integrands of Lemma 4.1 (in order to treat possible singularities). 

T h e o r e m  4.1. (a) 

D~kj(p) = U-~(p)  D~,,(p) 

(p + l )  Olu(p + l) 2 
U(p)=DI'I)(P)~D~(P+I), ,~=l f i  ~k '~ ' \ - -~JO~u(P-~ )  

U(p ) analytic in T,., p ~ ( - rr, n ]a, l = 2rtm, m ~ Z a, p + l ~ ( -- L krt, L kzr ] a, 

IU(p)I<c,  I U - ~ ( p ) I < c  ', p~T, .  

(b) 

Dik + 1~, L ( P )  = V- I (P)  D~,)(p) 

I . = 1 O.(p + 

V(p) analytic in Tc, P ~ ( - r c / L ,  rc/L] a, l=2nm/L ,  m ~ Z  a, p + l ~  
(--Lkn,  L~n] a, 

[V(p)l<c, 

(c) Dl,)(p) analytic in 
for l # 0 ,  

In the proof we 
Section III of ref. 5). 

I V - I ( p ) I < c  ', p ~ T c  

To, IDc,)(p)] <c;  D~,~(p+l)  analytic in To, 

IO~](p + l)1 < c(1 + tp + l l ) - '  

use the following lemmas (already established in 

Lemma 4.2. For P~T'c,  K(p), M(p),  and [sin(p/2)]/[q -1 
sin(q[p + / ] / 2 ) ]  are analytic and have the following bounds: 

' q s in(pJ2) [ ) - 1 
(a) i s in[ t l (p .+l~) /2] ,  ~<c(1 + Ilul 

(b) I K ( p + I ) I < c ( I + I I I )  

(c) [ m ( p + l ) [ < c ( l + [ l l )  

T'c = {p: dist(pl, ( - ~ ,  ~]) < re/2, (p_. ..... Pal) ~ (--~, ~]a -  I }. 
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Lemma 4.3. For p~T~', (K2+M2) -~ (p+l)  is analytic and 

I(K2+M2)(p'+l)l>~c(l+lp'+l]) 2, l•0, p 'e(-Tz,  rc] d 

I(K 2 + M 2) - i  (p +/)1 ~< c(1 + I/I 2)-, 

where T " - { p l d i s t ( p l , ( - T z ,  n])~<r, (P2 ..... pa)~(-rc, n]a}, r defined 
below. 

Lemma 4.4. 

a'.(p) 2 

(b) 

[g(p)l > c IP[; 

(c) 

(a) 

a~,,(p+l) 

Oj(p + l) 
Ip~l l~#0, p~ (_n ,  n]a 

< 2  [P. + l . l '  

rtlPl>~z/2, preal ,  pE(--z~,n] a, c=(2 /n)  2 

c'q 2 < K2(q) + M2(q) < cq2; r/Iql ~< zc, q real 

1 
K2(p + l) + M2(p + l) >t Tn 2 Ill 2 

l=27zm, m ~ Z  a, p+l~(--Lkrc, Lkrc] a 

The proof of Lemma 4.3 considers the result on the reciprocal of an 
analytic function: for f (z)  analytic in Izl<~R with suplzl~< R I f ( z ) l<M 
and f ( 0 ) = m ,  it follows that 1If(z) is analytic in Izl <~,'=-ImlR/4M with 
I 1/f(z)l < 2/Im[. Hence, the upper bound for (K 2 + M 2)- ~ (details in ref. 5). 
The proofs of Lemmas 4.2 and 4.4 are elementary (single estimates). 

Now we turn to the following proof. 

Proof of Theorem 4.1. Assumption (a). For the upper bound on 
U(p) we use 

cg~,(p + ip') = 1 + ~ sin(p~ + ip'j,) = exp[6 sin(p~ + ip'~,)] + d)(~ 2) 

Hence [note that 6 and p'u are small (<  1)l, 

k lu+ip'~ +d) 62 
~k,.{P'+l+ip'~]<~ e x p { 6 j ~ = I s i n ( P " + L J \  ~ 1/I )}  ( ) 

~< exp 2 6 y r  sin (P" + l " l l  
, \ - - Z T - / J  + m(a ~) 
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for large L and small p' (the sum is bounded by 3). With this bound and 
Lemmas 4.2 and 4.3, separating the 1= 0 term, we obtain 

IU(p)q <~ c + c ~ [IK(p)I + Im(p)l][lK(p + l)l + [m(p + l)l] 
~#o I( K2 + MZ)(P + l)l 

I-qI s in (pJ2)  2 1 
x sin[q(p~ + l,,)/2] 01/2) -2 p = l  

C 

<~c-t-1#o ~' ~j, (l +llu[) z<c  

TO get the lower bound we analyze the k --+ co limit of the expression 
for U(p) (similar calculations follow for finite k) 

U(p)=iy .p  ~ - - i y . (p+l )  e ipJ'- 1 2 
(p+O' 

- iy .p x -- iy . f (p)  

where cg.~,(p + l) =- l imk_ ~ cg~.u((p + l)/Lk). 
We note that U ( p ) ~  1, and so it is necessary to investigate the 

expression only for p away from zero. We write 

{ (,,,,+l,,)~ 
cg. .~ , (p+l)=exp 6 L s i n \ ~ / j + ( 9 ( 6 - ' )  

j = l  

=- exp{ ah(p. + 1.)} + (9(62) 

and hence 

 /p+ll' +(9I 2  
/1=| 

For p .  = n (where U vanishes with the usual average, see Section 3), 

exp{ah(p,, 2 12 ~exp{Z&h(n+l,,)} 
f . ( P ) =  Y~ I-I + l , , ) } ~  4 

1 
x (rt + l,) 2 + Zv~,. (p,, + 1,3-' + (9(6-') 

The I u sum may be written as 

1 2 sinh[26h(nrO] b'- = " 
,,=, nx (nrt) z -t- b 2 ~ c sinh 6, ~ (p,, + l,,)- 

v:~p 
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where we used that h(x)= -h ( -x ) .  For 0 < p .  < r~, we also get 

~. ~ exp{2ah(n~+p.)} 
,, _Z2o [ [(nz +p. )2  + b2](nz +p.) 

exp{ -26h(nz + 2~ - p . ) }  "~ 
- [(nrc + 2 n - p . ) 2  + b2](nn + 2rt -p~,)J >~ c sinh 6 

Similar analysis follows for negative p. For complex values p + ip', with p' 
small enough (p ' - .  6), we still have 

I~.(P, + l~, + ip~,)[ = exp{6h(p~ + 1~,)} + (9(6) 2 

which leads to the same bound. 
Since U-1(p)=iy.f(p)/f2(p)x-i~.p/p 2, we obtain IU-~(p)l< 

c/sinh 6, proving part (a) of the theorem. 
Part (b) is similar, and part (c) comes from Lemmas 4.2 and 4.3. | 

Finally, the theorem stated in Section 2 follows from the Theorem 4.1 
and Lemma 4.1. 

5. I N T E R A C T I N G  F E R M I O N S  A N D  F I N A L  C O M M E N T S  

Using the RG transformation proposed here, we shall obtain a formula 
for the generating function of interacting fermions similar to that for the 
bosonic case (2.4), i.e., written in terms of two propagators P,  and G,, 
(given by Zj cjMjFjM)), an irrelevant potential V,,, and fields related to 
the minimizers M,, and local effective interactions D,,. In fact, starting with 
an action such as four fermions plus the Dirac action (properly written) 
and applying the RG transformation to the generating function, following 
procedures similar to those considered for the scalar case (see Section 2 
and refs. 3 and 4), i.e., separating the quadratic part and using the orthogonal 
property, after n steps we get 

Z(/7, h) = c exp{ �89 P.h)} 

x f exp{ -- V,,(M,,6 + G,,fT, M,,~ + G,,h)- �89 D.qs)} d~ d~k 

with simple expressions for P,, and G,, (such as ~.jcjMjFjM)), and 
uniform exponential decay for M,, and D,,, that is, a formalism which shall 
make easier the analysis of correlation functions. 

Another question to be investigated is the connection between 
wavelets and the structures associated with the scale decomposition as 
pointed out in Section 2. Is'4~ 



1082 Pereira 

As a final c o m m e n t ,  we emphas ize  that  the R G  formal i sm is con-  
sidered here on ly  as a useful technical  tool,  a formal i sm related to a scale 
decompos i t i on :  we do no t  a s sume  it as a m a p  "from H a m i l t o n i a n s  to 
H a m i l t o n i a n s "  (see ref. 6 for p rob lems  with such an  a s sumpt ion) .  D u e  to 
proper t ies  such as o r thogona l i t y  be tween  scales, the R G  m e c h a n i s m  shall 
make  easier the s tudy  a n d  con t ro l  of  the physical  cor re la t ion  funct ions  
descr ib ing the ini t ial  models ,  a l t hough  m a p p i n g  them on  "s t range"  systems 
(the t r ans fo rma t ion  breaks  uni tar i ty) .  It  is also wor th  r e m e m b e r i n g  that  
the "exotic" p e r t u r b a t i o n  in the t r a n s f o r m a t i o n  does no t  change  the 
effective act ions  at small  m o m e n t a ,  i.e., large distances.  
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